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Abstract 
The Life Cycle Assessment (LCA) is a generally accepted methodology to quantify the environmental impacts of products or 
systems. Nonetheless, various sources of uncertainty and complexity create barriers to its widespread adoption. Meanwhile, 
new technologies within the Industry 4.0 are offering innovative capabilities to overcome some of these challenges. Therefore, 
this work has three main objectives: (i) to review and identify research gaps in recent developments in the LCA methodology; 
(ii) to develop a Digital Twin (DT) based adapted LCA methodology; and (iii) to implement the methodology into a user-friendly, 
quick, robust and reliable DT-based LCA software. The methodology developed encompasses a theoretical proposal to adapt the 
traditional LCA, followed by a practical implementation and a proof-of-concept application, in a quest to develop a feasible DT-
based LCA model. The practical implementation of this methodology led to a software named Towards an Online LCA for Bio-
based processes (TOLCAB), providing a real-time LCA. This software targets the bio-based processing sector, but it is easily 
customisable for any sector. To demonstrate its capabilities, as a proof-of-concept, TOLCAB was applied in two case studies: the 
production of biodiesel from rapeseed and the production of the b-Galactosidase enzyme. Although in its early stages of 
development, TOLCAB proved to be a valuable tool for quickly providing static and dynamic results using powerful visualisation 
tools. Nonetheless, this approach is a first step to bridging the gap between theoretical LCA capabilities and practical applications 
for industries under the digitalisation paradigm. 
 
Keywords: LCA, Digital Twins, Software, Industry 4.0,	Digitalization, Bio-based processes. 

 
1. Introduction 

Decision-makers around the world frequently run against 
uncertainties when evaluating possible sustainable courses of 
action. This is particularly valid when it comes to 
environmental strategies (Stock and Seliger, 2016). Therefore, 
it is essential to have objective tools for quantifying 
environmental performances (Finnveden et al., 2009). The Life 
Cycle Assessment (LCA) is one of them and the most suitable 
for performing eco-assessments (Hauschild et al., 2018). It is a 
robust and standardised methodology that enables a holistic 
environmental assessment of products, processes or activities 
across their entire life cycle, from raw materials to the End-of-
Life (EoL) (ISO:14040, 1997). This evaluation is done by 
undertaking a sequence of steps that essentially map all inputs 
and outputs of the defined system to attribute them to their 
respective environmental impacts (ISO:14040, 2006). After 
analysing the results, common goals include improving the 
system's overall environmental impact, comparing multiple 
scenarios, or communicating the findings to stakeholders, 
among others (Hauschild et al., 2018). Meanwhile, 
environmental regulations have been increasing over the 
years, and the trend is expected to continue (Sala et al., 2021). 
However, LCA is still largely associated with several sources of 

complexity and uncertainty. Acquiring data to assess systems 
properly is a significant operational barrier, as it is very time 
demanding and requires expertise and stakeholder 
coordination (Beltran et al., 2018; Teh et al., 2020). Other 
substantial obstacles occur, such as technological ones (e.g., 
complex software and unintegrated data management 
systems) (Pieragostini et al., 2012), disregarding temporal 
considerations (Beloin-Saint-Pierre et al., 2020), lacking 
standardisation in impact assessment methods (Hauschild et 
al., 2013), or difficulties in incorporating results into decision-
making (Pryshlakivsky and Searcy, 2021), among others. 
Meanwhile, the fourth industrial revolution, commonly 
labelled as Industry 4.0, is taking place. New technological 
advancements, such as Artificial Intelligence (AI) or the 
Internet of Things (IoT), are creating novel and more efficient 
systems, especially when collecting and managing large 
datasets. Innovative capabilities that were previously 
unthinkable are now modifying both short-term performance 
and long-term sustainability (Ghobakhloo, 2018). In this 
context, the LCA has a unique potential to become automated 
(Culaba et al., 2022).  The opportunity to merge LCA with the 
Digital Twin (DT) strategy is identified in the literature as 
promising (Barni et al., 2018). Applying this technology to LCA 
could potentially create a real-time bi-directional DT-based 
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LCA (Udugama et al., 2021). This can enable the collection of 
time-dependent inventory data to provide dynamic results. 
The ultimate goal would be to create a closed loop of 
environmental improvements (Thiede, 2021). 
This article is organised as follows. Section 2 provides a 
literature review on the standard LCA methodology and the 
associated limitations while also outlining significant research 
developments suggested in recent years. Section 3 describes 
the methodology to adapt the LCA towards a DT-based model. 
The TOLCAB software is presented in Section 4. A proof-of-
concept is depicted in Section 5, where TOLCAB is applied to 
two relevant case studies. To conclude, Section 6 summarises 
the final remarks and provides recommendations for future 
work. 
 

2. Literature Review 
LCA is a scientific, holistic, systematic, and multidisciplinary 
procedure which gained relevance during the 1990s and is 
now used across all industry sectors (Mannan and Al-Ghamdi, 
2022). Among others, it has numerous applications in product 
development, strategic decisions, policy making, and 
marketing (ISO:14044, 2006). 

2.1. Standard LCA methodology 
According to the ISO standards (ISO:14040, 2006; ISO:14044, 
2006), LCA is an environmental assessment methodology 
based on four main stages: (1) Goal and scope definition; (2) 
Life Cycle Inventory; (3) Life Cycle Impact Assessment; and (4) 
Interpretation. Even though they are designed to be 
performed sequentially, LCA allows for learning and 
consequent improvements across all stages, making it an 
iterative approach (Hauschild et al., 2018). 
1. Goal and Scope Definition. The goal identifies the study's 
purpose, application, audience, and way of communication. 
Defining the scope consists in establishing several modelling 
options. Namely, setting the system boundaries, functional 
unit, data quality requirements, allocation regulations, 
assumptions, limitations, and impact assessment methods 
and categories (ISO:14044, 2006). The system boundaries 
define the unit processes to be included in the system and 
their respective level of detail (ISO:14040, 2006; ISO:14044, 
2006). They represent the study limits: physical entities, time 
horizon and geographical locations (Hauschild et al., 2018).  
2. Life Cycle Inventory (LCI). This step aims to systematically 
collect all the inputs and outputs of each unit process 
considered within the system boundaries (Hauschild et al., 
2018). All inventory should follow the data quality 
requirements previously defined, which include ensuring that 
data is precise, complete, representative, consistent, and 
reproducible while thoroughly providing the data sources and 
respective assumptions in the information (ISO:14044, 2006). 
Collected data can be classified as primary or secondary data, 
depending on whether it was directly or indirectly captured 
from the supply chain (Mannan and Al-Ghamdi, 2022). Data 
can be obtained from four different main channels: (i) manual 
data entry; (ii) sensor-based equipment; (iii) web search (i.e., 
internet databases); and (iv) virtual models and ready data 

(i.e., engineering models loaded into the software) (Spreafico 
and Russo, 2021). LCI is generally considered the most critical 
and time-consuming phase (Ferrari et al., 2021), as data 
collection for the inventory phase accounts for around 70% to 
80% of the total time when performing an LCA (Teh et al., 
2020). 
3. Life Cycle Impact Assessment (LCIA). This step translates the 
inventory flows obtained from the previous LCI phase into 
apprehensible environmental impacts (e.g., global warming, 
ozone depletion, acidification, etc.) (Hauschild et al., 2018). 
This stage consists of three mandatory tasks: (i) selection of 
impact categories, category indicators and characterisation 
models; (ii) classification to assign the LCI results to the 
selected impact categories; and (iii) characterisation to 
calculate the category results (ISO:14044, 2006). There are 
additional optional steps: (a) normalisation; (b) grouping; (c) 
weighting; and (d) data quality analysis (ISO:14044, 2006). 
The impact assessment methods must be selected since they 
will guide the following stage. When choosing the impact 
assessment methods, several options are available (e.g., 
ReCiPe, CML 2001, PEF, etc.). The recommended method by 
the European Commission is the Product Environmental 
Footprint (PEF) method (European Union, 2021). During 
classification and characterisation, the contribution of each 
flow is assigned and quantified to the respective 
environmental impact categories by multiplying the life cycle 
inventory value with the appropriate characterisation factors 
(Zampori and Pant, 2019). Normalisation usually follows to 
enable comparison between the impact categories (Hauschild 
et al., 2018). It consists in dividing the characterisation results 
by selected reference values (ISO:14044, 2006), which are 
called normalisation factors. To conclude, weighting can 
assign relative importance to each impact category in order to 
support the impact profile interpretation (ISO:14044, 2006). 
The weighting results are obtained by converting the 
normalised results using selected weighting factors 
(ISO:14044, 2006). This can include aggregating impact scores 
into several or one single indicator, commonly labelled Single 
Score (SS), to simplify the communication of results 
(Hauschild et al., 2018). 
4. Interpretation.  This final step systematically reviews and 
refines the results obtained in the LCA, aiming to present final 
conclusions, limitations and recommendations (ISO:14044, 
2006). Usually, the system’s environmental impact hotspots 
are identified at this stage. According to the United Nations 
(2017), environmental hotspots can be a “life cycle stage, 
process or elementary flow which account for a significant 
proportion of the impact of the functional unit”. Furthermore, 
uncertainty and sensitivity analysis are frequently performed 
to evaluate the robustness of results, as well as to pinpoint 
areas that might require additional research to reinforce the 
conclusions (Hauschild et al., 2018). The uncertainty analysis 
allows to manage and quantify uncertainty sources, 
improving the precision and robustness of the study. 
Sensitivity analysis can determine how different values of a 
single variable – usually an environmental hotspot - can affect 
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the results (United Nations, 2017). To achieve this, scenario 
comparisons may be useful (ISO:14044, 2006). Additionally, 
methodological choices, assumptions and their associated 
uncertainties (Hauschild et al., 2018) are considered and 
analysed according to the goal and scope of the study 
(ISO:14044, 2006). To perform a successful study, it is 
fundamental to perform iterative processes to refine results 
and accomplish the defined goal (Hauschild et al., 2018). To 
conclude the LCA study, the limitations, conclusions and final 
recommendations must also be reported (ISO:14044, 2006). 
Limitations. Although the LCA provides valuable guidance in 
environmental assessment, the literature acknowledges the 
need for ongoing improvements (Pieragostini et al., 2012). 
Significant limitations hindering the LCA application are 
outlined in Table 1. These sources of complexity and 
uncertainty create barriers for LCA practitioners (Ghita et al., 
2021). Ultimately, this limited applicability reduces the 
potential of the use of this methodology. 

Table 1 - Key limitations hindering the LCA application (Ghita et al., 2021). 

Disregard of temporal and spatial considerations 

Uncertainty in the functional unit and system boundaries 

Hard to obtain quality data 

Time-consuming 

Lack of uniformization in LCIA methods 

Technological barriers (complex software, databases, and 
inexistant integrated and interoperable data management system) 
Cost (demands experts and stakeholder coordination) 

Problematic use in policy-regulatory context 

Difficult application in complex industries 

Hard to translate into strategic decision-making  

 
2.2. Methodological LCA developments 

This section introduces the recent methodological 
developments to conventional LCA techniques presented over 
the years that aim to expand LCA’s capabilities.   

Dynamic LCA (D-LCA). The lack of temporal 
considerations in most LCA studies is concerning, as it has 
been demonstrated that such factors can significantly impact 
the outcomes, particularly in long-life cycle products or 
services (e.g., construction or energy industries) (Beloin-Saint-
Pierre et al., 2020). Moreover, when the usage phase 
contributes considerably to the life cycle environmental 
impacts, assuming static and average-oriented usage mixes 
for some products (e.g., ICT products) can potentially bias the 
conclusions of LCA evaluations (Hagen et al., 2020; Mashhadi 
and Behdad, 2018). D-LCAs have been created to consider and 
define dynamic systems and their temporal differentiation of 
flows (Levasseur et al., 2010). Sohn et al. (2020) identified 
three forms of LCA dynamism: dynamic process inventory, 
dynamic systems, and dynamic characterisation. Temporal 
considerations are largely arising due to the capabilities of 
real-time data collection technologies (Ferrari et al., 2021).  

Ubiquitous LCA (U-LCA). This new concept for 
assessing environmental and social impacts in the current 

context of industry 4.0 was proposed by Mashhadi and Behdad 
(2018). The authors suggest a methodology framework to 
improve assessments of emerging systems while aiding 
decision-making processes. U-LCA fundamentally 
reformulates the traditional definition of the functional unit. 
By employing IoT capabilities of real-time interconnectivity 
and tracking, the authors argue that future physical 
boundaries can be extended to encompass entire life cycle 
input and output flows dynamically. Perhaps the central 
innovation in the U-LCA proposition lies in embracing smart 
manufacturing capabilities to overcome traditional LCA 
restrictions in assessing smart infrastructure burdens. The U-
LCA methodology includes smart capabilities to track product 
data during its entire life cycle, including the usage and End-
of-Life (EoL) phases, which are typically left unassessed. These 
real-time computation methods ensure that the temporal and 
spatial considerations are addressed, contributing to a more 
accurate LCIA. U-LCA provides an accurate real-time 
assessment capable of tracking emerging systems to 
ultimately originate more sustainable decisions. However, U-
LCA is still a conceptual framework needing further research 
and implementation efforts. 

 
2.3. Technologies enabling LCA in the Industry 4.0 

This section outlines Industry’s 4.0 technologies that can be 
applied to enhance LCA procedures. Ultimately, these 
novelties provide relevant insights when developing the 
methodology for this project’s work. Due to the unique 
implications offered by each Industry 4.0 technology and their 
superadditive synergy (i.e., they can provide singular 
sustainability implications when in a hyper-connected 
manufacturing ecosystem), these approaches frequently 
combine multiple technologies in the same environment 
(Ching et al., 2022). 

Smart sensor-based technologies: Data collection and 
management strategies are particularly important under the 
Industry 4.0 paradigm. The introduction of IoT in the 
manufacturing field enables developments in information 
systems, which in turn facilitate the real-time use of 
potentially massive amounts of data collected from various 
sources (Ingrao et al., 2021). This data collection represents 
the bridge between the physical and the virtual world and, 
thus, requires investments in a capable Information 
Technology (IT) infrastructure - e.g., sensors, Programmable 
Logic Controllers (PLC), computers, and data visualisation 
tools (Thiede, 2018). In turn, the expansion of real-time data 
collecting can create a need for on-the-fly decision support 
and management systems (Culaba et al., 2022). Smart sensors 
are pieces of equipment that collect product data 
autonomously and automatically integrate it with IoT 
technologies, ultimately requiring no human intervention 
(Spreafico and Russo, 2021). A wide variety of smart sensors 
can be adopted at various stages throughout a product's 
lifecycle to monitor resource consumption, waste generation, 
and performance of unit operations or for safety and quality 
control verifications (Watson et al., 2021). Sensors are selected 
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based on their monitoring objectives and their general 
characteristics. Additionally, integrating readily available data 
from production software systems (e.g., Enterprise Resource 
Planning (ERP), Manufacturing Execution System (MES), etc.) 
with the LCA can be an interesting and data-rich path (de 
Soete et al., 2014). Using actual data flows collected from 
sensor-based equipment might reduce the complexity, 
restrictions, and inconsistencies in data when performing the 
LCI (Ferrari et al., 2021). Furthermore, the importance of 
adopting more accurate data collection methods to achieve 
more reliable LCA results is widely discussed in the literature. 
For example, Watson et al. (2021) state that intelligent sensors 
play a more significant role in the future of food and beverages 
by increasing resource efficiency and lowering the sector's 
carbon impact. Another example is Ingrao et al. (2021), which 
focuses on energy consumption; it shows a significant 
difference between data derived using relatively advanced 
mathematical models and data acquired on-site using direct 
measurement using sensors. 

Digital Twin (DT). DT is a digital model containing 
physical elements in a real space, virtual elements in a virtual 
space, and the bi-directional information exchange 
connecting them both (Grieves and Vickers, 2016; Kritzinger 
et al., 2018). It essentially consists of a detailed and real-time 
(or near real-time) representation of a physical system based 
on simulation (Kamble et al., 2018; Zambrano et al., 2022). A 
DT optimally contains all the attainable information of the 
depicted system (Grieves and Vickers, 2016; Kritzinger et al., 
2018), allowing for “self-diagnosis, self-optimisation and self-
configuration without the need for human input or 
intervention” (Zambrano et al., 2022). DTs of smart products 
enable producers to virtually evaluate and test the product’s 
performance while assessing the respective production 
system (Ghobakhloo, 2018). Therefore, they have the potential 
to improve performance characteristics (Kamble et al., 2022) 
and create optimal physical solutions for both resources and 
operations (Yu et al., 2022). However, DT applications in 
environmental assessments, namely the LCA, are still in the 
very early stages of research. Barni et al. (2018) introduced a 
breakthrough LCA framework using the DT technology as a 
“data-rich representation of the company’s products and 
processes”. According to the authors, DT can help the LCA 
become more accurate and automated. Importantly, when 
used in conjunction with a network of sensors, DT can 
describe real-time processes and produce simulated data to 
aid LCA forecasts. DT capabilities can reduce traditional data 
collection burdens in the supply chain, transforming the LCA 
into a real-time (online) self-assessment tool. In 2021, Ghita 
et al. proposed a generic solution combining DT and the D-LCA 
methodology. Their framework introduced spatial and 
temporal data variability while addressing relevant, 
sustainable challenges, such as traceability, efficiency, and 
profit-sharing. Nevertheless, these ground-breaking research 

efforts still considerably lack practical implementation as they 
are conceptual contributions. Moreover, the systematic 
review by Kamble et al. (2022) on the DT technology for 
sustainable purposes shows that existing literature still needs 
to consider the life cycle perspective in depth. 
 

2.4. Framing the Problem 
At their core, LCA approaches reproduce physical systems by 
creating virtual models capable of performing environmental 
impact calculations. However, in conventional LCA 
procedures, the connection between the physical and virtual 
systems is only established by exchanging manual data flows 
without any automated interchange of data. 
The problem is framed using Figure 1. The purpose of this 
visualisation is to illustrate how an ideal DT-based LCA could 
operate. The physical system (in red) represents events in the 
supply chain: its stages are represented (i.e., downstream, 
midstream and upstream), as well as the data collection 
methods that can monitor the flows occurring within them. 
The virtual system (in blue) contains the LCA methodology 
and all the necessary virtual procedures to achieve the 
environmental assessment objectives. These procedures 
include the LCA stages (see section 2.1), decision-making, and 
an eventual database connecting both stages. The arrows in 
the figure represent the data exchange between the entities. 
All these interactions should ideally happen in real-time. 
Therefore, not only should online data collection from the 
processes in the physical system be transcribed into the 
virtual system, but the decision-making conclusions arising 
from the virtual system should also be translated into the 
physical system in real-time. This demonstrates the ongoing 
challenge in this research field since having all the 
information exchange happening automatically and in real-
time is not yet accomplishable. Some of the current obstacles 
identified in the literature are the following: (i) implementing 
a DT-based LCA throughout the entire supply chain; (ii) 
operational limitations (e.g., integrating the various 
architectural layers and services in a single environment); (iii) 
accounting for the different LCA’s objectives; (iv) establishing 
a real-time and bi-directional connection between the 
physical and the virtual world capable of live environmental 
improvements in the system; and (v) a small number of 
practical applications. 
Examples of practical applications are given by: (a) Barni et al. 
(2018), which created an automated sustainability labelling 
system for the woodworking sector; (b) Riedelsheimer et al. 
(2020), that developed a concept for the clothing industry 
considering the middle and EoL stages; and (c) Kaewunruen et 
al. (2020), which evaluated of a subway station to improve 
communication and asset management. 
The following research question was formulated: is it possible 
to overcome the mentioned research gaps while developing a 
feasible framework to implement a DT-based LCA?
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Figure 1 - Online bi-directional connection between the physical (on the left, in red) and the virtual (on the right, in blue) systems.

 
3. Methodology to adapt the LCA towards a DT-based 

model 
The developed methodology comprises three phases, as 
schematically represented in Figure 2. They are described in 
detail in the following subsections. 
 

 
Figure 2 - Methodology phases to adapt the LCA towards a DT-based model. 

 
Phase 1 - Adapting LCA: Theoretical framework 
The standard LCA methodology was reviewed in detail in 
section 2. Therefore, only the proposed extensions to the 
existing LCA standards are described in detail in the following 
steps. 

Step 1. Goal and Scope Definition: The objectives, 
audience, functional unit, and reference flow of the LCA study 
should be stated (ISO:14044, 2006). As for the system 
boundaries, the monitoring capabilities of the Industry’s 4.0 
technologies enable expanding the traditional boundaries to 
ideally encompass the entire supply chain (Mashhadi and 
Behdad, 2018). Furthermore, this step includes the definition 
of the types and sources of data, and corresponding data-
quality requirements, as detailed in ISO:14044 (2006).  

Step 2. LCI. Due to the digitisation of the LCI, rather 
than relying solely on historical data, the LCA analysis can now 
be carried out in real-time (Ferrari et al., 2021). Therefore, the 
final LCI results can be portrayed as static and dynamic 
inventory data. This combination allows the study to consider 

temporal variability without compromising the ease of 
interpretation. LCI starts with data collection (ISO:14044, 
2006). It is proposed that this process is inverted: the 
practitioner should define the data sources rather than the 
data itself. The data sources will then provide the necessary 
information automatically; they can include: (a) sensor-based 
equipment and (b) artificially generated data or existing 
external databases. Artificially generated data refer to 
probabilistic distributions that can simulate the behaviour of 
actual sensor-based equipment (Westermann and Evins, 
2019). The chosen data collection methods can provide the 
LCA with real-time data flows. Static inventory data averages 
time-dependent flows, whereas dynamic inventory data 
provides flows varying with time. When selecting the data 
collection methods, the practitioner should balance the data-
quality requirements as well as consider the inherent 
characteristics of the data collection equipment. Likewise, the 
user is encouraged to use: (i) sensor-fusion alternatives, 
which combine sensors to reduce uncertainty in cases where 
it may compromise the results’ reliability; and (ii) soft 
sensors, which are based on models that are capable of 
estimating challenging process variables that cannot be 
measured directly in real-time (Thiede, 2021). The selected 
data sources provide real-time flows, creating dynamic 
inventory data. For instance, the consumption of a specific 
resource can be monitored using a sensor providing data 
varying with time. Depending on the sensor’s inherent 
characteristics, such as the speed or the accuracy of data 
acquisition, this sensor can provide time-dependent with 
different degrees of uncertainty. This enables quantifying the 
inventory for this resource in real-time. The total inventory 
data includes information for each unit process contained 
within the system boundary (ISO:14044, 2006). This is 
expected to achieve the objectives defined in ISO:14044 
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(2006): “reach uniform and consistent understanding of the 
product systems to be modelled”. However, calculated and 
estimated data must be included to encompass the 
background processes (Muñoz et al., 2018). Moreover, the 
remaining LCI procedures mentioned in ISO:14044 (2006) 
should be performed: validation of data, relating data to unit 
process and functional unit, refining the system boundary, and 
allocation should be considered.  

Step 3. LCIA. Static and dynamic LCI results from Step 
2 are automatically incorporated in order to begin Step 3. The 
PEF method should be selected since it is recommended by the 
European Union (2021). The consequential approach is 
followed because it estimates the environmental implications 
from the system’s life cycle considering a global perspective 
(Ekvall, 2019), and, importantly, it is compatible with the 
decision-support perspective followed in this work. The 
following tasks include classification, characterisation, 
normalisation and weighting, as described in section 2.1. The 
main challenge here is for the practitioner to combine static 
and dynamic LCIA results; hence, the user is encouraged to 
match both static and dynamic LCIA capabilities, depending 
on the defined objectives. Dynamic results portray a 
significant amount of information and can be harder to 
interpret. However, whereas static results only provide 
average values, this time-dependent information enables the 
user to characterise and keep track of the system’s variability. 
This knowledge can be used to support decision-making. For 
instance, by identifying maximum impact values, the user can 
act to reduce their likelihood instead of acting based on 
average values that may be misleading. Considering time-
dependent results can, therefore, result in more effective and 
sustainable actions. Nevertheless, complete static LCIA results 
should also be provided. They can be very helpful for users to 
easily grasp the environmental impacts of the system and 
straightforwardly identify hotspots. 

Step 4. Interpretation. This step is performed using 
automatic and explicit procedures. They are here as follows:  
(i) Identify the environmental hotspots automatically by 

performing a Pareto analysis of the impact categories, 
processes units and flows in the system. 

(ii) Provide iteration suggestions to improve the 
reliability of the results:  
a. Propose different data collection methods to 

reduce uncertainty when monitoring critical 
inputs or outputs of the system. 

b. Propose alternative options for the processes 
selected to reduce their environmental impacts - 
retrofit design (Carvalho et al., 2013). 

(iii) Perform an uncertainty analysis by building a 
simplified uncertainty matrix, which can provide 
knowledge to better understand the implications of 
results. The user should take the automatically 
generated insights from the matrix and act primarily 
on the highest contributors to the overall 
environmental impact and uncertainty. 

(iv) Perform a sensitivity analysis to better understand 
the implications of potential critical parameters. This 
is a valuable tool for evaluating possible courses of 
action. 

(v) Provide a short reporting segment to facilitate the 
communication of results. This should be comprised 
of the main decisions defined in the goal and scope 
stage, as well as the main results from the LCA, which 
include the environmental hotspots and suggestions 
for improving the result’s reliability. This report 
considers the user’s objectives and establishes a 
transition between the comprehensive results and 
the decision-making process. Although dynamic LCI 
and LCIA results can provide valuable information, 
they are not automatically incorporated into quick 
reporting. Due to the significant amount of data, it is 
challenging to convey them clearly and thoroughly. 
Therefore, in this step, the practitioner is encouraged 
to revisit the dynamic results obtained and, in 
particular, to analyse the temporal variability 
associated with specific environmental hotspots. 

Phase 2 – TOLCAB 
In this phase, a software named TOLCAB (Towards Online LCA 
for Bio-based processes) is created based upon the theoretical 
framework developed in Phase 1 (see Figure 2). The general 
software architecture is schematically represented in Figure 3. 
Interface and Database: TOLCAB incorporates the interface 
and database in a single environment. It was built in Excel to 
create a stand-alone, easy-to-use software application that 
facilitates user navigation and supports decisions at every 
level. The database includes (i) bio-based processes data, 
meaning all the inputs and outputs occurring in each process 
considered in the life cycle; (ii) the inventory data from the 
selected data sources; and (iii) the necessary PEF method 
information (i.e., characterisation, normalisation and 
weighting factors). 
Surrogate model: The technical challenges inherently posed 
by a DT-based LCA methodology (e.g., time, resources and 
computational effort) require this thesis to implement a 
surrogate model strategy. According to Davis et al. (2017), this 
approach is employed when a simpler relationship with 
acceptable accuracy between highly complex input and 
output data is required. Therefore, the software will include 
simplifications: (i) the sensor-based equipment is substituted 
by artificially generated data; (ii) supply chain processes and 
the available technological options are simplified; and (iii) 
integration mechanisms across the entire supply chain are 
assumed to be established. 
Phase 3 – Proof-of-concept 
As shown in Figure 2, this proof-of-concept intends to 
demonstrate the application of TOLCAB (implemented in 
Phase 2). Accordingly, this software is validated using two case 
studies from the bio-based processing sector: biodiesel 
production and b-Galactosidase enzyme production.  
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Figure 3 - General software architecture of TOLCAB. 

For each case study, (i) the original research is contextualised; 
(ii) data sources used in the original study are detailed and 
compared with the ones employed in TOLCAB; (iii) the initial 
user actions are performed; and finally, (iv) the published 
results are visualised and compared to the results obtained 
with TOLCAB. A discussion follows to benchmark the results 
obtained, recognising the benefits and drawbacks associated 
with the software while addressing the associated limitations. 
 

4. TOLCAB: Practical Software Implementation 
The bio-based sector has been selected because it is the 
dominant industry in Denmark, which is used in this thesis for 
demonstration purposes. This section introduces the key 
capabilities of this software, contemplating the user’s point of 
view: section 4.1 describes the initial user actions; section 4.2 
illustrates user actions associated with the assessment and 
interpretation; and lastly, section 4.3 outlines potential 
directions for future development. 

4.1. User inputs A: initial actions 
To apply TOLCAB in a bio-based processing company, the 
initial actions must be followed. They are responsible for 
modelling the physical system to be analysed. The goal is to 
prepare data in order to be automatically retrieved from the 
system so that a real-time LCA can be performed. 

4.2. User inputs B: assessment and interpretation actions 
Assuming that the initial actions have been followed, the 
physical system is now completely defined. This allows for the 
results to be automatically generated. Therefore, the user 
should now be able to navigate and interpret them. 
Noteworthy is that the main target is for the user to gain 
reliable, fast and robust insights about the system’s 
environmental impacts. 

Life Cycle Inventory. The user can retrieve 
information from the inventory data and inspect particular 
flows if necessary. For the dynamic flows (time-dependent), 
the user can also visualise their variation with time. 
Additionally, the total LCI results can be obtained: however, 
they simplify the results, which means the dynamic flows are 
converted in averages, thus, becoming static flows. 
Nonetheless, this averaging provides valuable information for 
future simplified calculations during the LCIA and 
interpretation stages. 

Life Cycle Impact Assessment. The calculations are 
carried out automatically. The LCIA static and dynamic results 
are ready to be visualised. As previously mentioned, the main 
challenge is for the user to combine different static and 

dynamic results into understandable data. Hence, the user is 
encouraged to match both static and dynamic LCIA 
capabilities, depending on the defined goals. Dynamic LCIA 
characterisation results of a particular flow can be visualised. 
These are described using boxplots which are used to 
represent graphically the numerical values of a dataset 
graphically. For each impact category, they present the 
dynamic inventory dataset of the chosen flow, illustrating the 
variability of the flow’s impacts with time. This time-
dependent information enables the user to characterise and 
keep track of the flow’s variability. This knowledge can be 
used to support decision-making. Moreover, complete static 
LCIA results are provided. Characterisation results can be 
comprehensively visualised in tables, relative contributions, 
and customisable graphics. These features can be observed in 
the different tabs developed in the software. The 
normalisation and weighting results are also estimated 
automatically. The weighting results can be observed for each 
impact category or as a Single Score (SS). 

Interpretation. Several interpretation steps are 
automatically performed. Nonetheless, the user can perform 
additional analyses using the capabilities provided in the 
software. The automatic features are: (i) the hotspot ranking 
tool; (ii) the environmental hotspots finder; and the (iii) 
suggestion box. The conceptual design of features (ii) and (iii) 
has been designed, but due to time constraints, they are not 
yet totally integrated into the software flow. These tools 
support decision-making by (a) quickly portraying critical LCA 
results and (b) encouraging users to perform iterative actions 
to improve the results' reliability.  
Dynamic results still need to be automatically incorporated 
into this segment. The users are encouraged to revisit the 
dynamic results obtained. In particular, to analyse the 
temporal variability associated with the specific 
environmental hotspots found in this step. Thanks to this 
time-dependent information, the user can identify and track 
the flow's variability. This can provide valuable insights to 
achieve the goals defined for the study. 

Quick Reporting. This final display and reporting 
feature presents five essential elements: (i) Starting Points – 
display relevant decisions made during the goal and scope 
definition stage. These include the Functional Unit, the 
Reference Flow, and System Boundaries; (ii) Life Cycle options 
– show the options selected within the system boundaries; 
(iii) Summary of Results - summarises the LCA results. They 
include, for example, CO2 footprint, but the user can also select 
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other categories of interest. The critical hotspots are also 
highlighted and displayed; (iv) Quick suggestions – 
summarises the potential recommendations to improve the 
results’ reliability (e.g., propose process and supply chain 
design alternatives, options on other possible solvents and 
chemicals, retrofit designs, etc.); and (v) Additional functions 
- although inactivated at this point, it aims to provide three 
quick capabilities: update data, export quick results and create 
a new system. 

4.3. Future software development 
This section presents possible directions for future software 
development. Of note is that a key future goal is for this 
software to be used by different industry sectors. Thus, the 
aim is that the inbuilt database is to be expanded to cover such 
processes and supply chains. Other future paths are described 
here as follows: 
Improvements to the software architecture: develop a 
python-based Graphical User Interface (GUI) to act as a front-
end. The main goal is to provide seamless user navigation 
while comprehensively supporting decisions. 
Combining static and dynamic results: as of now, dynamic 
results can only be visualised for a single flow at a time. Other 
alternatives to visualise and analyse dynamic results are being 
investigated and studied in order to be included in the next 
version of the software. 
Automating goal and scope definition: develop the software 
so that the goal and scope definition step can automatically 
affect the following steps. For instance, making the quick 
reporting customisable to the user’s defined goal. 
Employing actionable control data systems: linking a control 
system as a new layer towards a bi-directional connection 
with the physical system. 
Expanding interpretation capabilities: portray dynamic 
results to provide valuable information for users and enhance 
the uncertainty and sensitivity features. 
Improving quick reporting and decision-making: bringing 
together temporal considerations and simple visualisation. 
Testing alternative ways to incorporate dynamic results in the 
Quick reporting tab is under development. 
 

5. Proof-of-concept: Application 
To demonstrate its capabilities and usefulness, TOLCAB was 
applied to two case studies: (A) González-García et al. (2013) 
and (B) Feijoo et al. (2017). Due to simplicity and space 
constraints, only case study A will be presented here. 
Approach and assumptions. The original study is not precisely 
reproduced as it was performed using available published 
data in order to test the feasibility of TOLCAB. Therefore, the 
assumptions associated are: (i) Denmark as the geographic 
location, (ii) the PEF method to perform the LCIA calculations, 
and (iii) selection of different LCI data sources. Moreover, the 
original study embraced a cradle-to-gate perspective, 
whereas this proof-of-concept employs a cradle-to-grave 
perspective. Accounting for a larger scope of the supply chain 
when evaluating environmental impacts was a goal outlined 
in the methodology. Additionally, data collection methods 

were created to simulate actual direct measurements when, 
in fact, this data was gathered entirely from the articles. Thus, 
due to the lack of available dynamic data from the case 
studies, only static results were obtained. For the sake of 
simplicity, sensors retrieve the exact values stated in the case 
study. 

5.1. Case study A: biodiesel production 
The LCA study performed by González-García et al. (2013) 
evaluated the environmental impacts of biodiesel production 
derived from the transesterification of crude rapeseed oil from 
a cradle-to-gate perspective in a Spanish company. Moreover, 
in the original study, subsystems SS1 (Rapeseed oil 
production) and SS2 (Biodiesel production) were both 
evaluated, which was not possible to reproduce using TOLCAB 
since the information on flows was only available for the SS2. 
Therefore, only the SS2 was modelled using TOLCAB. This 
process includes seven subprocesses. They were all modelled 
in TOLCAB, and an additional one had to be added in this 
validation since some data from the case study was not 
assigned to any specific process. The study used different LCI 
data sources and CML 2001 as the LCIA method. Note that this 
was merely an approximate estimate used to facilitate relative 
comparison. 

Results. Relative contributions per process to each impact 
category tend towards similar conclusions obtained in the 
original study. SS2.2 and SS2.3 were the highest contributing 
processes for all impact categories for both methods.  Also, all 
categories had the same highest contributing process except 
for the GWP and LC categories, where SS2.2 dominated in 
TOLCAB and SS2.3 dominated in the original study. However, 
inconsistencies with the original study were found when 
exploring TOLCAB’s possibilities in more detail. For instance, 
the original research mentioned ammonia and nitrate as 
remarkable contributors to eutrophication. However, that was 
not the case when using TOLCAB: Oxygen (SS2.4) was the 
most significant contributor, followed by Methanol and 
Electricity. Additional actions were performed in TOLCAB in a 
quest to present its possibilities, even though the original 
study did not pursuit them. For instance, the normalised and 
weighted results showed that the cancer human health effect 
impact category largely dominates the environmental impact. 
Moreover, the interpretation section of TOLCAB identified the 
environmental hotspots and tested sensitivity and 
uncertainty analyses. However, these results did not provide 
much value in this case study, as they were not comparable 
and lacked quality data to be reliable. 

5.2. Discussion 
The selected case studies posed several barriers to 
demonstrating the potential of TOLCAB. Data was collected 
from indirect sources and only static data was available. 
Building a real-time evaluation was, therefore, unfeasible. The 
proof-of-concept applications demonstrated the software 
usefulness and capabilities when performing an LCA. Applying 
TOLCAB introduces several benefits, such as: (i) it reduces 
time consumed due to the industry knowledge database, the 
automatic calculations, and the considerable decision-support 
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features; (ii) its user-friendliness software which would 
facilitate the use in industrial settings; (iii) it offers powerful 
graphics to visualise the impact assessment results; (iv) it 
enables the evaluation of dynamic monitoring of results; and 
(v) it provides automatic support during the interpretation 
stage, which leads to quick and minimal resource usage that 
can ultimately aid decision-making. 
Nonetheless, drawbacks were also identified. They are the 
following: (a) to perform the user actions in the tool, basic 
learning is needed, which can nevertheless turn away some 
users; (b) several envisioned functionalities are not 
operational at this point due to this project’s time constraints; 
and (c) rough approximations may have compromised the 
reliability of the validation. 
The software is still in its early stages and has a considerable 
margin for improvement. To achieve the possibilities 
envisioned in the theoretical proposal, the future 
development suggestions should be implemented (see section 
4.3). Nevertheless, TOLCAB showed that it can be a valuable 
stand-alone software. Due to its industry-specificity and user-
friendliness, it can substantially benefit the industry sector of 
bio-based processes. Noteworthy is that, although TOLCAB has 
been developed for the bio-based processing sector, the 
software is easily customizable to any sector. As companies 
crave quick and easy-to-use alternatives in environmental 
assessment, this tool can contribute to broader adoption of 
LCA practices. 
 

6. Conclusions & Future work 
A theoretical framework towards an online DT-based LCA in 
Industry 4.0 has been proposed in this work. By suggesting 
specific procedures to be added to the four stages of the 
conventional LCA methodology, this framework can guide 
practitioners in incorporating the DT technology when 
applying the LCA. These theoretical possibilities were 
implemented on a practical level by developing the software 
TOLCAB (Towards an Online LCA in Bio-based processes). The 
software architecture was defined considering the surrogate 
model approach. TOLCAB aims to close the gap between 
theoretical LCA capabilities and practical applications for 
industries going through the digitalisation paradigm. Hence, 
the user actions to visualise and interpret the results 
considered aiding not only real-time results interpretation 
and decision-making, but also user experience. Emphasis was 
put on supporting the interpretation stage so that sustainable 
decision-making could be more efficiently executed. Although 
TOLCAB was a successful implementation of the proposed 
theoretical framework, it is still in its early stages, and thus 
some software features are still inactive. Furthermore, several 
procedures still require further development; hence, 
forthcoming advancements were discussed in a quest to 
bridge the gap between the theoretical framework and its full 
practical implementation. Nevertheless, the software was 
validated using two case studies in the literature, which 
allowed to explore the possibilities offered using actual 
implementation scenarios. However, several assumptions 

needed to be made; thus, the comparison of results was 
difficult and, therefore, needs continuous and extensive future 
evaluation. Nonetheless, it was possible to clearly conclude 
that TOLCAB provides a user-friendly environment to enable 
automatic calculations, quick operations, enhanced 
visualisation and interpretation support. Final users are 
expected to take less time on the platform than when going 
through the traditional LCA procedures, and also, they do not 
need to be LCA experts. Further development of this user-
friendly LCA software focusing on efficiency, visualisation and 
decision support is anticipated to promote wider adoption of 
environmental assessments. Additionally, for TOLCAB to 
become the tool of choice, further testing in a plethora of real-
world applications is necessary.  These efforts will enable the 
extension of the database of bio-based processes, the 
computational capabilities of the software, and its robustness 
and reliability. These will result in LCA applications covering 
most systems in the bio-based processing industry while 
improving the reliability of the results. TOLCAB’s ultimate goal 
is to propose environmental improvements in a closed-loop 
manner with minimal need for human intervention. 
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